Partition Function Zeros of the Q-state Potts Model for Non-integer Q

نویسندگان

  • Seung-Yeon Kim
  • Richard J. Creswick
  • Chin-Kun Hu
چکیده

The distribution of the zeros of the partition function in the complex temperature plane (Fisher zeros) of the two-dimensional Q-state Potts model is studied for non-integer Q. On L × L self-dual lattices studied (L ≤ 8), no Fisher zero lies on the unit circle p0 = e iθ in the complex p = (e − 1)/√Q plane for Q < 1, while some of the Fisher zeros lie on the unit circle for Q > 1 and the number of such zeros increases with increasing Q. The ferromagnetic and antiferromagnetic properties of the Potts model are investigated using the distribution of the Fisher zeros. For the Potts ferromagnet we verify the den Nijs formula for the thermal exponent yt. For the Potts antiferromagnet we also verify the Baxter conjecture for the critical temperature and present new results for the thermal exponents in the range 0 < Q < 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatic Polynomials, Potts Models and All That

The q-state Potts model can be defined on an arbitrary finite graph, and its partition function encodes much important information about that graph, including its chromatic polynomial, flow polynomial and reliability polynomial. The complex zeros of the Potts partition function are of interest both to statistical mechanicians and to combinatorists. I give a pedagogical introduction to all these...

متن کامل

Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros

We present and analyse low-temperature series and complex-temperature partition function zeros for the q-state Potts model with q = 4 on the honeycomb lattice and q = 3, 4 on the triangular lattice. A discussion is given on how the locations of the singularities obtained from the series analysis correlate with the complex-temperature phase boundary. Extending our earlier work, we include a simi...

متن کامل

Exact results for the zeros of the partition function of the Potts model on finite lattices

The Yang-Lee zeros of the Q-state Potts model are investigated in 1, 2 and 3 dimensions. Analytical results derived from the transfer matrix for the one-dimensional model reveal a systematic behavior of the locus of zeros as a function of Q. For 1 < Q < 2 the zeros in the complex x = exp(βHq) plane lie inside the unit circle, while for Q > 2 they lie outside the unit circle for finite temperatu...

متن کامل

Complex-temperature phase diagram of Potts and RSOS models

We study the phase diagram of Q-state Potts models, for Q = 4cos2(π/p) a Beraha number (p > 2 integer), in the complex-temperature plane. The models are defined on L × N strips of the square or triangular lattice, with boundary conditions on the Potts spins that are periodic in the longitudinal (N) direction and free or fixed in the transverse (L) direction. The relevant partition functions can...

متن کامل

Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions

We study the chromatic polynomial PG(q) for m× n squareand triangular-lattice strips of widths 2 ≤ m ≤ 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin–Kasteleyn representation for such lattices and obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999